Notebooks¶

  • Examples
    • full-FORCE and “Classic FORCE” learning with spikes
      • Classic FORCE
      • full-FORCE
        • Target-Generating Network
        • Task-Performing Network
      • Results
      • References
    • Heterogeneous Synapses
      • Neuron Example
      • Vector Example
      • Multiple Vector Example
    • Network Improvements
    • Computing Functions Across a Rolling Window of Time
      • 1. Setting up the network
      • 2. Decoding functions from the window
      • 3. Set up probes
      • 4. Simulate the network
      • 5. Plot results
      • Understanding the network
      • Debugging issues in performance
      • References
  • Research
    • Discrete Principle 3
    • Geometric Decoder Optimization
      • Decoded Function
      • Neuron Model
      • Baseline Decoders
      • Refined Decoders
      • Results
    • Linear System Model Reduction
      • Problem Statement
      • Exact Minimal Realizations
      • Balanced Realizations
      • Approximate Model Order Reduction
      • References
    • Sampling High-Dimensional Vectors
      • Abstract
      • The Number-Theoretic Method (NTM)
      • The Inverse Transform Method
      • Spherical Coordinate Transformation
      • Acknowledgements

Logo

nengolib

Tools for robust dynamics in Nengo.

https://secure.travis-ci.org/arvoelke/nengolib.svg?branch=master

https://codecov.io/github/arvoelke/nengolib/coverage.svg?branch=master

Navigation

  • Notebooks
    • Examples
    • Research
  • Reference
  • Success stories
  • License

Quick search

Related Topics

  • Documentation overview
    • Previous: import nengolib
    • Next: Examples
©2017-2019, Aaron Voelker. | Powered by Sphinx 1.6.7 & Alabaster 0.7.12 | Page source